NIH fMRI Summer course

Computational modeling and fMRI

(2nd order statistics, across-trial variability and trajectory-based processing)

Biyu Jade He, Ph.D.

National Institute of Neurological Disorders and Stroke

National Institutes of Health

August 6th, 2014

Talk Outline

- 2nd-order statistics of fMRI signal
 - 1st order: mean
 - 2nd order: variance; power spectrum; auto-correlation
- The relation between ongoing and evoked activity
 - How to assess
 - An example of overwhelming negative interaction in fMRI
- Trajectory-based processing
 - A more parsimonious and realistic model
- Similar observations in electrophysiology

Subject #1, right motor cortex (RMC), resting-state 4 fMRI runs, 190 volumes each, TR = 2.16 sec, total scan time ~27 min

fMRI signal temporal power spectra

If $o < \beta < 1$, autocorrelation function follows:

$$r \propto 1/\tau^{1-\beta} \propto \tau^{-(1-\beta)}$$

Scale invariance; scale-free;

$$f(\lambda x) =_{d} \lambda^{H} f(x)$$

Temporal domain: Scale-free dynamics;
Spatial domain: Fractals

$$P(f) = Af^{-\beta}$$

Then
$$P(\lambda f) = A(\lambda f)^{-\beta} = A\lambda^{-\beta} f^{-\beta} = \lambda^{-\beta} P(f)$$

Power-law exponent differentiates between brain networks and correlates with metabolism

Time-domain scaling analysis

Scale-invariance:

$$f(\lambda x) =_{d} \lambda^{H} f(x)$$
If $\alpha < 1$,
Hurst exponent
$$H = \alpha;$$

Goodness-of-fit test

Hurst exponent reproduces results from power-law exponent

40

120

Variance

200

Power-law exponent decreases during task

Widespread changes in scaling behavior during task

Potential clinical applications - Chronic back pain

Potential clinical applications

Trait anxiety

Smaller H → higher anxiety
Brain being constantly activated?

Tulkonov et al., 2010

Alzheimer's Disease

Larger H – AD Not as efficient in online information processing?

Maxim et al., 2005

Interim Summary

- 2nd-order statistics of fMRI signal (variance; power-law exponent; autocorrelation)
 - Differentiates between brain networks
 - Correlates with brain metabolism
 - Reduced variance and temporal memory/redundancy during task performance
 - Mean-and-variance stationary; contains an optimal dynamic range

Talk Outline

- 2nd-order statistics of fMRI signal
- The relation between ongoing and evoked activity
 - How to assess
 - An example of overwhelming negative interaction in fMRI
- Trajectory-based processing
 - A more parsimonious and realistic model
- Similar observations in electrophysiology
- Potential clinical applications

Signal + Noise (Linear Superposition)

Signal + Noise (Linear Superposition)

Trial-averaging:

General Linear Model:

What if linear superposition is not correct?

i) Linear Superposition

ii) PositiveInteraction

The literature is conflicted!

Supporting linear superposition:

Dynamics of Ongoing Activity: Explanation of the Large Variability in Evoked Cortical Responses

Amos Arieli, Alexander Sterkin, Amiram Grinvald, Ad Aertsen*

Science 1996

"In spite of the large variability, evoked responses in single trials could be predicted by linear summation of the deterministic response and the preceding ongoing activity."

Voltage-sensitive dye in anesthetized cats (visual cortex)

Coherent spontaneous activity accounts for trial-to-trial variability in human evoked brain responses

Michael D Fox¹, Abraham Z Snyder^{1,2}, Jeffrey M Zacks^{1,3} & Marcus E Raichle^{1,2,4,5}

Nature Neuroscience, 2006

fMRI in human subjects watching movies

"coherent spontaneous fluctuations in human brain activity account for a significant fraction of the variability in measured event-related BOLD responses... spontaneous and task-related activity are linearly superimposed in the human brain."

Not squaring so well with linear superposition...

Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex

Carl C. H. Petersen*†‡, Thomas T. G. Hahn*, Mayank Mehta^{§¶}, Amiram Grinvald[∥], and Bert Sakmann*

PNAS, 2003

Voltage-sensitive dye in anesthetized and awake rats (barrel cortex)

"Surprisingly, unlike in the anesthetized cat... here we find that both sensory-evoked postsynaptic potentials (PSPs) and sensory-evoked action potentials (APs) are suppressed by (higher) ongoing spontaneous activity."

Spontaneous local variations in ongoing neural activity bias perceptual decisions

Guido Hesselmann^{†‡§¶}, Christian A. Kell[∥], Evelyn Eger^{†‡§}, and Andreas Kleinschmidt^{†‡§}

PNAS, 2008

fMRI in human subjects performing a task

"That the difference in activity between vase and faces trials changes over peristimulus time is consistent with a modulation of evoked responses by preceding levels of baseline activity and suggests an interaction between baseline activity and the evoked response."

Testing linear-superposition

Y: Task-evoked activity

X+Y: Recorded signal

Linear Superposition: $r_{X,Y} = o$; Stereotypical task-evoked activity: $\sigma^2_Y = o$.

One observable, two unknowns!!!

The law of variance sum:

$$\sigma^2_{X+Y} = \sigma^2_X + \sigma^2_Y + 2r_{X,Y} \sigma_X \sigma_Y$$

$$\sigma_{X+Y}^2 = \sigma_X^2 + \sigma_Y^2 + 2r_{X,Y} \sigma_X \sigma_Y$$
Recorded Ongoing Evoked (under task)

• Linear Superposition: $r_{XY} = 0$

$$\sigma^2_{X+Y} = \sigma^2_X + \sigma^2_Y$$

$$\sigma^2_{X+Y} \ge \sigma^2_X$$

- Prediction: $\sigma^2_{X+Y} \ge \sigma^2_X$ (equal sign in the limit of $\sigma^2_Y = 0$)

Positive Interaction: r_{x,y} > c

$$\sigma^2_{X+Y} \geq \sigma^2_X$$

- Prediction: $\sigma^2_{X+Y} \ge \sigma^2_X$ (equal sign in the limit of $\sigma^2_Y = 0$)

Negative Interaction: r_{X,Y} < o

– Prediction:

$$\sigma_{X+Y}^2 > \sigma_{X}^2$$
 if $-\sigma_Y/2\sigma_X < r_{X,Y} < \sigma_Y$

$$\sigma^2_{X+Y} < \sigma^2_{X}$$
, if $r_{X,Y} < -\sigma_Y/2\sigma_X < \sigma_Y$

$$\sigma^2_{X+Y} = \sigma^2_{X,Y}$$
 if $r_{X,Y} = -\sigma_Y/2\sigma_X$

Task Design

Fox et al., Neuron 2007; He et al., Neuron 2010

σ^2_{X+Y} VS. σ^2_{X}

Test 1: Variance of brain activity during task (X+Y) vs. rest (X)

σ^2_{X+Y} VS. σ^2_{X}

Test 2: Variance of post-stimulus (X+Y) vs. pre-stimulus (X) activity

Whole-brain voxel-wise analysis

Trial-averaged Activity

Whole-brain voxel-wise analysis

Could it all be hemodynamic?

How to test? Assuming linear-superposition in the neural activity, can hemodynamic response introduce variability reduction?

	Range (% change)	SD (% change)	Hurst exponent H
Empirical	30.1	4.45	0.84
Simulation	30.9	4.41	0.83

Recorded fMRI data (He, JNS 2011)

Simulated data (He, JNS 2013)

Simulated evoked BOLD activity

HRF nonlinearity cannot cause variability reduction

Interim Summary

Observations:

- ➤ Temporal variance Task < Rest</p>
- Across-trial variability
 Post-stimulus < Pre-stimulus</p>

If we assume there exists separate ongoing and evoked activity and that ongoing activity is (mean- and variance-) stationary: **G**iven the Law of Variance Sum,

Ongoing and evoked activity must negatively interact.

Partial cancellation during across-trial averaging

Time (sec)

low baseline

high baseline

Is trajectory-based idea more parsimonious?

Trajectory-based processing

"... information is encoded in evolving neural trajectories. ... computation is in the voyage through state space as opposed to the destination."

"The response of a population of neurons in a network is determined not only by the characteristics of the external stimulus but also by the dynamic changes in the internal state of the network."

(Buonomano& Maass, 2009)

Neuronal firing in premotor cortex

Assessment of cortical state space

Shrinking of cortical state-space

Across-trial variability correlates with behavior

Interim Summary

- Spatial patterns of across-trial variability and trial-averaged response are dissociable.
- Variability reduction contains behaviorally relevant information not present in trial-averaged response.
 - > Reevaluation of which brain regions are involved in which functions...
- Trajectory-based processing framework is more parsimonious and potentially closer to reality.
 - Q: How does the brain distinguish between ongoing and evoked activity?
- The brain processes incoming sensory stimuli in a strongly initialstate-dependent manner.

<u>Autism</u>

Potential clinical applications - variability

Dinstein et al., 2012 (fMRI)

Castellanos et al., 2005

Schizophrenia <u>ADHD</u>

Winterer et al., 2000 (EEG)

signal-to-noise ratio

Overal conclusions

- Prevalent variability reduction observed in fMRI and ECoG data under a simple visual detection task contradicts the widely assumed "linear superposition" model.
- If we assume that ongoing and evoked activity sum to give rise to the recorded brain signal, then they must negatively interact to produce variability reduction.
- An alternative and more parsimonious framework is that cortical activity trajectory carries information processing in itself; and that the distinction between ongoing and evoked activity under task context is artificial.
- Variability reduction contains behaviorally relevant information not present in trial-averaged response, opening up a new avenue for cognitive and clinical neuroscience.

Present:

- Brian Maniscalco, Ph.D.
- Alex Baria, Ph.D.
- Raymond Chang
- Amy Lin

Past:

- Zak Hill (Univ. of Washington)
- Qi Li, Ph.D. (NIMH)
- Dan Arteaga (Vanderbilt Univ.)
- Megan Wang (Stanford Univ.)

NATIONAL INSTITUTE OF NEUROLOGICAL Disorders and Stroke

- NIH MRI facility
- NIMH MEG core facility

Collaborators:

- Eric Wasserman (NIH)
- Mark Hallett (NIH)
- Xiao-Jing Wang (NYU)
- Rishidev Chaudhuri (NYU)
- Patrice Abry (ENS, Lyon)
- Philippe Ciuciu (Neurospin, Paris)
- Gustavo Deco (Pompeu Fabra Univ.)
- Garrett Stanley (Georgia Tech)

Washington University:

- Marc Raichle
- John Zempel
- Avi Snyder
- Maurizio Corbetta

